CHARGE:More abstractly, a charge is any generator of a continuous symmetry of the physical system under study. When a physical system has a symmetry of some sort, Noether's theorem implies the existence of a conserved current. The thing that "flows" in the current is the "charge", the charge is the generator of the (local) symmetry group. This charge is sometimes called the Noether charge.Thus, for example, the electric charge is the generator of the U(1) symmetry of electromagnetism. The conserved current is the electric current.In the case of local, dynamical symmetries, associated with every charge is a gauge field; when quantized, the gauge field becomes a gauge boson. The charges of the theory "radiate" the gauge field. Thus, for example, the gauge field of electromagnetism is the electromagnetic field; and the gauge boson is the photon.Sometimes, the word "charge" is used as a synonym for "generator" in referring to the generator of the symmetry. More precisely, when the symmetry group is a Lie group, then the charges are understood to correspond to the root system of the Lie group; the discreteness of the root system accounting for the quantization of the charge.ELECTRON:The electron is a subatomic particle carrying a negative electric charge. It has no known components or substructure. Therefore, the electron is generally believed to be an elementary particle.[2] An electron has a mass that is approximately 1/1836 that of the proton[9] The intrinsic angular momentum (spin) of the electron is a half-integer value in units of ħ, which means that it is a fermion. The antiparticle of the electron is called the positron. The positron is identical to the electron except that it carries electrical and other charges of the opposite sign. When an electron collides with a positron, both particles may either scatter off each other or be totally annihilated, producing a pair (or more) of gamma ray photons. Electrons, which belong to the first generation of the lepton particle family,[10] participate in gravitational, electromagnetic and weak interactions.[11] Electrons, like all matter, have quantum mechanical properties of both particles and waves, so they can collide with other particles and be diffracted like light. However, this duality is best demonstrated in experiments with electrons, due to their tiny mass. Since an electron is a fermion, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle.[10]以上是定义,简要回答可以用ELECTRON的第一句The electron is a subatomic particle carrying a negative electric charge