
编辑本段简介名称来源 数学(mathematics;希腊语:μαθηματικ?)这一词在西方源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。 要想学好数学,勤练才可以。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 编辑本段数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过. 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。 然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。 恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”编辑本段数学的分类 离散数学 模糊数学数学的五大分支 1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学数学分支 1.算术 2.初等代数 3.高等代数 4. 数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学广义的数学分类 从纵向划分: 1.初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。 2.变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。 3.近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。 4.现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。 1900年,在巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单: (1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)代数曲线和曲面的拓扑研究。 (17)半正定形式的平方和表示。 (18)用全等多面体构造空间。 (19)正则变分问题的解是否总是解析函数? (20)研究一般边值问题。 (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (22)用自守函数将解析函数单值化。 (23)发展变分学方法的研究。 从横向划分: 1.基础数学(Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。 2.应用数学(Applied mathematics)。简单地说,也即数学的应用。 3 .计算数学(Computation mathematics)。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。 4.概率统计(Probability and mathematical statistics)。分概率论与数理统计两大块。 5.运筹学与控制论(Op-erations research and control)。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。编辑本段符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。编辑本段数学的发展史 世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”编辑本段国外数学名家高斯 数 学 天 才 —— 高 斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。牛顿 牛顿是英国物理学家和数学家。 在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 后来,家里叫他停学,到他母亲的农场上去帮忙。在他母亲的农场上,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 浩瀚的真理海洋,却还完全是个谜。”莱布尼茨 戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。阿基米德 阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。
满天红云,满海金波,红日像一炉沸腾的钢水,喷薄而出,金光耀眼。
早晨,太阳像个刚出门的新媳妇,羞答答地露出半个脸来。
太阳落山了,它那分外的强光从树梢头喷射出来,将白云染成血色,将青山染成血色。
太阳慢慢地透过云霞,露出了早已胀得通红的脸庞,像一个害羞的小姑娘张望着大地。
灿烂的阳光穿过树叶间的空隙,透过早雾,一缕缕地洒满了校园。
太阳更低了,血一般的红,水面上一条耀人眼睛的广阔的光波,从海洋的边际直伸到小船边沿。
天空被夕阳染成了血红色,桃红色的云彩倒映在流水上,整个江面变成了紫色,天边仿佛燃起大火。
春天,那太阳暖洋洋的,它伸出漫暖的大手,摩挲得人浑身舒坦。
阵阵春风,吹散云雾,太阳欣然露出笑脸,把温暖和光辉洒满湖面。
炎炎的烈日高悬当空,红色的光如火箭般射到地面上,地面着了火,反射出油在沸煎时的火焰来。
没有敢抬头看一眼太阳,只觉得到处都耀眼,空中、屋顶、地上,都是白亮亮的一片,白里透着点红,由上到下整个像一面极大的火镜,每条都是火镜的焦点,仿佛一切东西就要燃烧起来。
晚秋了,太阳懒洋洋地挂在天上,像个老公公露着笑脸在打瞌睡。
深秋的太阳像被罩上橘红色灯罩,放射出柔和的光线,照得身上、脸上,暖烘烘的。
太阳一到秋天,就将它的光芒全撒向人间。瞧,田野是金黄的,场地是金黄的,群山也是金黄的。
冬天的太阳像月亮一样苍白无力。
太阳正被薄云缠绕着,放出淡淡的耀眼的白光。
太阳一年操劳到头,忙到冬天,就筋疲力尽,几乎放不出热力来了。
和煦的阳光,透过稠密的树叶洒落下来,成了点点金色的光斑。
远处巍峨的群山,在阳光照映下,披上了金黄色的外衣,显得格外美丽。
阳光被层层叠叠的树叶过滤,漏到他身上变成了淡淡的圆圆的轻轻摇曳的光晕。
这时候正是早上八九点钟,明亮的阳光在树叶上涂了一圈又一圈金色银色的光环。
阳光透过淡薄的云层,照耀着白茫茫的大地,反射出银色的光芒,耀得人眼睛发花。
金灿灿的阳光倾泻下来,注进万顷碧波,使单调而平静的海面而变得有些色彩了。
红艳艳的太阳光在山尖上时,雾气像幕布一样拉开了,城市渐渐地显现在金色的阳光里。
那刺穿云块的阳光就像根根金线,纵横交错,把浅灰、蓝灰的云朵缝缀成一幅美丽无比的图案。
太阳刚刚升上山头,被鲜红的朝霞掩映着,阳光从云缝里照射下来,像无数条巨龙喷吐着金色的瀑布。
金色的阳光透过缝隙,洒在褐色土地滋生的小草上。
天空一碧如洗,灿烂的阳光正从密密的松针的缝隙间射下来,形成一束束粗粗细细的光柱,把飘荡着轻纱般薄雾的林荫照得通亮。
太阳泛起火红的笑脸,使朦胧的校园豁然揭去纱帐。
天际出现了一抹紫红色的朝晖,像绽开的红玫瑰。
刚刚起身的太阳呵,精神抖擞,红光四溢,把整个世界照得通亮。
火红的旭日刚刚透出海平面,给美丽恬静的大海抹上一层玫瑰色。
朝阳把它的光芒射向湖面,微风乍起,细浪跳跃,搅起满湖碎金。
忽然,迎面升起一轮红日,洒下的道道金光,就像条条金鞭,驱赶着飞云流雾。
海面上跃出一轮红日,鲜艳夺目,海空顿时洒满了金辉,海面由墨蓝一变而为湛蓝。
金灿灿的朝晖,渐渐染红了东方的天际,高高的黄山主峰被灿烂的云霞染成一片绯红。
太阳在朝霞的迎接中,露出了红彤彤的面庞,霎时,万道金光透过树梢给水面染上了一层胭脂红。<
自己的事自己做
写作点拨:总结可以写自己的论文整个的框架结构是怎样的,主要是针对研究哪一方面的知识,最后可以写一下自己论文中的不足,展望的话也就是希望自己从论文中收获一些什么东西,希望自己得到哪些方面的发展,例文如下:
总结:本文阐述了信息系统、J2EE开发平台方面的基本知识,并对该信息系统的各个设计实现环节等进行了研究,给出了公安信息系统的设计与具体的实现方法。通过开发此项目,提高了本人的理论知识和实际动手能力。
软件工程论文怎么写本文在阅读、参考大量国内外相关理论及具体应用的基础上,根据当前现有的工作条件、网络情况和实际工作的需要,设计并实现了基于J2EE平台的公安信息管理系统。本文的主要工作总结如下:
1、总结分析国内公安信息系统建设的现状与经验,分析了J2EE平台的优势,找出当前信息系统存在的问题,针对问题系统分析和研究信息系统的需求。
2、提出全市公安信息系统总体架构规划原则和思路,确定系统建设总体结构。
3、根据系统架构的总体设计思路,确定全市公安信息系统的数据库设计原则和思路。
4、根据系统的功能需求,提出了系统网络部署架构设计和软硬件要求。
5、结合公安工作的实际情况,进行了系统功能设计,给出了公安信息系统的逻辑结构、功能结构,并详细阐述了各子系统的功能设计。
6、对一些重点模块及用到的关键技术进行了阐述。此系统能够为用户提供网络环境下的办公环境,让各个部门的工作人员方便灵活地在系统的应用环境下处理信息,提交公告,发布新闻,使各种信息得以充分利用,有效地提高了办公效率,具有实用性和可扩充性。
展望:
在今后的系统开发中,信息平台将依托警用地理信息系统,通过对系统的改造和对数据库中地址信息的标准化,完成查证信息定位、地理关联查证、区域排查、地理轨迹分析、人、案件、机构地理特征以及四色预警功能。
实现信息平台与GIS的无缝整合;通过外网信息采集以及互联网实现与社会信息的整合共享,以实现信息系统为民所用,为民服务。
1、实现与警用地理信息系统的无缝整合。依托警用地理信息系统,通过对系统的改造和对数据库中地址信息的标准化,完成查证信息定位、地理关联查证、区域排查、地理轨迹分析、人、案件、机构地理特征以及四色预警功能,实现与GIS的无缝整合。
2、实现与社会资源信息的整合共享。利用互联网直接将大量的工商、税务、劳动、电信、金融、民航、部门劳务市场等部门登记的相关社会信息资源统一纳入信息系统整合范围。
并通过信息分析整合、碰撞对比和倒查扩案、网上调控、关联扩线、犯罪轨迹刻画等方法,主动发现破案线索,提高了打击违法犯罪总体效能。
也可参考以下内容:
3月至5月的这段时间,论文主要是进行格式的进一步规范,内容的充实等工作。在指导老师的精心指导下,论文三稿完成。在论文的后期修改过程中,我发现应更加深入地探讨问题,感觉需要提升的地方比较多,要参考的文章也很多。如果还有时间,论文应该还会有所突破。
我不会忘记这难忘的几个月。毕业论文给了我难忘的回忆。在我徜徉书海查找资料的日子里,面对无数书本的罗列,最难忘的是每次找到资料时的激动和兴奋。在整个过程中,我学到了新知识,增长了见识。在今后的日子里,我仍然要不断地充实自己,争取在所学领域有所作为。
脚踏实地,认真严谨,实事求是的学习态度,不怕困难、坚持不懈、吃苦耐劳的精神是我在这次论文撰写中获得的最大收益。我想这是一次意志的磨练,是对我实际能力的一次提升,也会对我未来的学习和工作有很大的帮助。