
2017中考数学真题
2017年广东省中考数学试卷
其他年份的和其他省市的(关注【初中生智慧君】微信公众号搜索:gzzhkt)内附答案详细解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)5的相反数是()
A. B.5 C.﹣ D.﹣5
2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()
A.×109 B.×1010 C.4×109 D.4×1010
3.(3分)已知∠A=70°,则∠A的补角为()
A.110° B.70° C.30° D.20°
4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()
A.1 B.2 C.﹣1 D.﹣2
5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()
A.95 B.90 C.85 D.80
6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形 B.平行四边形 C.正五边形 D.圆
7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()
A.(﹣1,﹣2) B.(﹣2,﹣1) C.(﹣1,﹣1) D.(﹣2,﹣2)
8.(3分)下列运算正确的是()
A.a+2a=3a2 B.a3•a2=a5 C.(a4)2=a6 D.a4+a2=a4
9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()
A.130° B.100° C.65° D.50°
10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()
A.①③ B.②③ C.①④ D.②④
二、填空题(本大题共6小题,每小题4分,共24分)
11.(4分)分解因式:a2+a= .
12.(4分)一个n边形的内角和是720°,则n= .
13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)
14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .
15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为 .
16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .
三、解答题(本大题共3小题,每小题6分,共18分)
17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.
18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.
19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?
四、解答题(本大题共3小题,每小题7分,共21分)
20.(7分)如图,在△ABC中,∠A>∠B.
(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.
21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.
22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:
体重频数分布表
(1)填空:①m= (直接写出结果);
②在扇形统计图中,C组所在扇形的圆心角的度数等于 度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?
五、解答题(本大题共3小题,每小题9分,共27分)
23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.
24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当=时,求劣弧的长度(结果保留π)
25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:=;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
网上可以查到的搜索当地中考试卷就能查到的
《初中数学中考真题精编》百度网盘资源免费下载
链接:
2008-2019学年初中数学中考真题精编Word版本 累计1715份|2019全国各地中考数学试题073份.rar|2018全国各地中考数学试题100份.rar|2017全国各地中考数学试题154份.zip|2016全国各地中考数学试题151份.zip|2015全国各地中考数学试题162份.rar|2014全国各地中考数学试题165份.zip|2013全国各地中考数学试题170份.zip|2012全国各地中考数学试题172份.zip|2011全国各地中考数学试题150份.zip|2010全国各地中考数学试题150份.zip|2009全国各地中考数学试题151份.zip|2008全国各地中考数学试卷157份.rar
2006年安徽省中考数学试题 八、(本题满分 14 分) 23 .如图( l ) ,凸四边形 ABCD ,如果点P满足∠APD =∠APB =α。且∠B P C =∠CPD =β,则称点P为四边形 ABCD的一个半等角点. ( l )在图( 3 )正方形 ABCD 内画一个半等角点P,且满足α≠β。 ( 2 )在图( 4 )四边形 ABCD 中画出一个半等角点P,保留画图痕迹(不需写出画法) . ( 3 )若四边形 ABCD 有两个半等角点P1 、P2(如图( 2 ) ) ,证明线段P1 P2上任一点也是它的半等角点 。第23题图济南市2006年高中阶段学校招生考试 27.(本题9分) 如图1,已知中,,.过点作,且,连接交于点.(1)求的长;(2)以点为圆心,为半径作,试判断与是否相切,并说明理由;(3)如图2,过点作,垂足为.以点为圆心,为半径作;以点为圆心,为半径作.若和的大小是可变化的,并且在变化过程中保持和相切,且使点在的内部,点在的外部,求和的变化范围.江西省南昌市2006年初中毕业暨中等学校招生考试25问题背景;课外学习小组在一次学习研讨中,得到了如下两个命题: ①如图1,在正三角形ABC中,M,N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°.则BM=CN: ②如图2,在正方形ABCD中,M、N分别是CD、AD上的点.BM 与CN相交于点O,若∠BON=90°.则BM=CN. 然后运用类似的思想提出了如下命题: ③如图3,在正五边形ABCDE中,M、N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN. 任务要求 (1)请你从①.②,③三个命题中选择一个进行证明; (说明:选①做对的得4分,选②做对的得3分,选③做对的得5分) (2) 请你继续完成下面的探索; ①如图4,在正n(n≥3)边形ABCDEF中,M,N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明) ②如图5,在正五边形ABCDE中,M、N分别是DE,AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否还成立,若成立,请给予证明.若不成立,请说明理由(I)我选 证明2006年南通市初中毕业、升学考试 (第28题12分)28. 如图,在平面直角坐标系中,O为坐标原点为,B(5,0),M为等腰梯形OBCD底边OB上一点,OD=BC=2,∠DMC=∠DOB=60°.求直线CB的解析式;求点M的坐标;∠DMC绕点M顺时针旋转α (30°<α<60°)后,得到∠D1MC1(点D1,C1依次与点D,C对应),射线MD1交直线DC于点E,射线MC1交直线CB于点F ,设DE=m,BF=n .求m与 n的函数关系式.2006年山东省青岛市初级中学学业水平考试 24.(本小题满分12分) 如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点. 如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况). (1)当x为何值时,OP‖AC ? (2)求y与x 之间的函数关系式,并确定自变量x的取值范围. (3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由. (参考数据:1142 =12996,1152 =13225,1162 =13456 或 =, =, =)浙江省2006年初中毕业生学业考试试卷 24.在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M. (1) 填空:直线l1的函数表达式是 ,交点P的坐标是 ,∠FPB的度数是: (2) 当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R=时a的值. (3) 当⊙C和直线l2不相离时,已知⊙C的半径R=,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.盐城市二○○六年高中阶段教育招生统一考试30.(本题满分12分) 已知:如图,A(0,1)是y轴上一定点,B是x轴上一动点,以AB为边,在∠OAB的外部作∠BAE=∠OAB ,过B作BC⊥AB,交AE于点C.� (1)当B点的横坐标为时,求线段AC的长;�(2)当点B在x轴上运动时,设点C的纵、横坐标分别为y、x,试求y与x的函数关系式(当点B运动到O点时,点C也与O点重合);� (3)设过点P(0,-1)的直线l与(2)中所求函数的图象有两个公共点M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直线l的解析式.�常州市二00六年初中毕业、升学统一考试28.(本小题满分10分) 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与轴相交于点A,与轴相交于点B。 (1)点P在运动时,线段AB的长度页在发生变化,请写出线段AB长度的最小值,并说明理由; (2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。湖北省黄冈市2006年初中学业水平考试 22.(本题满分14分)如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连结MP,当两动点运动了t秒时。 (1)P点的坐标为( , )(用含t的代数式表示); (2)记△MPA的面积为S,求S与t的函数关系式(0<t<4); (3)当t= 秒时,S有最大值,最大值是 ; (4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形是,求直线AQ的解析式。南京市2OO6年初中毕业生学业考试八、(本题9分)28.已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合. (1)如果折痕FG分别与AD、AB交与点F、G(如图1),,求DE的长; (2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切, 求折痕FG的长.江苏省淮安市2006年中等学校招生文化统一考试26.已知一次函数y=+m(O
你老师手里必然有。
2018年初三的同学们,中考已经离你们不远了,数学试卷别放着不做,要对抓紧时间复习数学。下面由我为大家提供关于2018泰州中考数学试卷及答案解析,希望对大家有帮助! 2018泰州中考数学试卷一、选择题 本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的. 的算术平方根是() A. B. C. 【答案】B. 试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是 ,故选B. 考点:算术平方根. 2.下列运算正确的是() •a3=2a6 C.(a3)2=a6 •a2=a3 【答案】C. 试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C. 考点:整式的运算. 3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是() A. B. C. D. 【答案】C. 考点:中心对称图形;轴对称图形. 4.三角形的重心是() A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点 【答案】A. 试题分析:三角形的重心是三条中线的交点,故选A. 考点:三角形的重心. 5.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是() A.平均数不变,方差不变 B.平均数不变,方差变大 C.平均数不变,方差变小 D.平均数变小,方差不变 【答案】C. 试题分析: ,S2原= ; ,S2新= ,平均数不变,方差变小,故选C.学#科网 考点:平均数;方差. 6.如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是() 【答案】D. ∴C(0,﹣4),G(﹣4,0), ∴OC=OG, ∴∠OGC=∠OCG=45° ∵PB∥OG,PA∥OC, ∵∠AOB=135°, ∴∠OBE+∠OAE=45°, ∵∠DAO+∠OAE=45°, ∴∠DAO=∠OBE, ∵在△BOE和△AOD中, , ∴△BOE∽△AOD; ∴ ,即 ; 整理得:nk+2n2=8n+2n2,化简得:k=8; 故选D. 考点:反比例函数综合题. 2018泰州中考数学试卷二、填空题 (每题3分,满分30分,将答案填在答题纸上) 7. |﹣4|= . 【答案】4. 试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4. 考点:绝对值. 8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 . 【答案】×104. 考点:科学记数法. 9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为 . 【答案】8. 试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8. 考点:整式的运算;整体思想. 学#科.网 10. 一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是 .(填“必然事件”、“不可能事件”或“随机事件”) 【答案】不可能事件. 试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件. 考点:随机事件. 11.将一副三角板如图叠放,则图中∠α的度数为 . 【答案】15°. 试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°. 考点:三角形的外角的性质. 12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为 cm2. 【答案】3π. 试题分析:设扇形的圆心角为n,则:2π= ,解得:n=120°.所以S扇形= =3πcm2. 考点:扇形面积的计算. 13.方程2x2+3x﹣1=0的两个根为x1、x2,则 的值等于 . 【答案】3. 试题分析:根据根与系数的关系得到x1+x2=﹣ ,x1x2=﹣ , 所以 = =3. 考点:根与系数的关系. 14.小明沿着坡度i为1: 的直路向上走了50m,则小明沿垂直方向升高了 m. 【答案】25. 考点:解直角三角形的应用. 15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为 . 【答案】(7,4)或(6,5)或(1,4). 考点:三角形的外接圆;坐标与图形性质;勾股定理. 16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为 . 【答案】6 试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′, 在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′= =6 .21世纪教育网 考点:轨迹;平移变换;勾股定理. 2018泰州中考数学试卷三、解答题 (本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.(1)计算:( ﹣1)0﹣(﹣ )﹣2+ tan30°; (2)解方程: . 【答案】(1)-2;(2)分式方程无解. 考点:实数的运算;解分式方程. 18. “泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下: 根据以上信息完成下列问题: (1)补全条形统计图; (2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数. 【答案】(1)详见解析;(2)960. (2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200× =960人. 考点:条形统计图;用样本估计总体.21世纪教育网 19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率. 【答案】 . 考点:用列表法或画树状图法求概率. 20.(8分)如图,△ABC中,∠ACB>∠ABC. (1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹); (2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长. 【答案】(1)详见解析;(2)4. 试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可. 试题解析: (1)如图所示,射线CM即为所求; (2)∵∠ACD=∠ABC,∠CAD=∠BAC, ∴△ACD∽△ABC, ∴ ,即 , ∴AD=4. 学@科网 考点:基本作图;相似三角形的判定与性质. 21.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1). (1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由; (2)如图,一次函数y=﹣ x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围. 【答案】(1)点P在一次函数y=x﹣2的图象上,理由见解析;(2)1 考点:一次函数图象上点的坐标特征;一次函数的性质. 22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE. (1)求证:△ABE≌△DAF; (2)若AF=1,四边形ABED的面积为6,求EF的长. 【答案】(1)详见解析;(2)2. 由题意2× ×(x+1)×1+ ×x×(x+1)=6, 解得x=2或﹣5(舍弃), ∴EF=2. 考点:正方形的性质;全等三角形的判定和性质;勾股定理. 23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份? (2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降元可多卖1份;B种菜品售价每提高元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少? 【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元. 试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论. 试题解析: =(6﹣)(20+a)+(4+)(40﹣a) =(﹣﹣4a+120)+(﹣) =﹣a2+12a+280 =﹣(a﹣6)2+316 当a=6,w最大,w=316 答:这两种菜品每天的总利润最多是316元. 考点:二元一次方程组和二次函数的应用. 24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD. (1)求证:点P为 的中点; (2)若∠C=∠D,求四边形BCPD的面积. 【答案】(1)详见解析;(2)18 . 试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理 ∵∠POB=2∠D, ∴∠POB=2∠C, ∵∠CPO=90°, ∴∠C=30°, ∵BD∥CP, ∴∠C=∠DBA, ∴∠D=∠DBA, ∴BC∥PD, ∴四边形BCPD是平行四边形, ∴四边形BCPD的面积=PC•PE=6 ×3=18 .学科%网 考点:切线的性质;垂径定理;平行四边形的判定和性质. 25.阅读理解: 如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离. 例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离. 解决问题: 如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒. (1)当t=4时,求点P到线段AB的距离; (2)t为何值时,点P到线段AB的距离为5? (3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果) 【答案】(1) 4 ;(2) t=5或t=11;(3)当8﹣2 ≤t≤ 时,点P到线段AB的距离不超过6. 试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC 则AC=4、OC=8, 当t=4时,OP=4, ∴PC=4, ∴点P到线段AB的距离PA= = =4 ; (2)如图2,过点B作BD∥x轴,交y轴于点E, ①当点P位于AC左侧时,∵AC=4、P1A=5, ∴P1C= =3, ∴OP1=5,即t=5; ②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2, ∴∠CAP2+∠EAB=90°, ∵BD∥x轴、AC⊥x轴, ∴CE⊥BD, (3)如图3, ①当点P位于AC左侧,且AP3=6时, 则P3C= =2 , ∴OP3=OC﹣P3C=8﹣2 ; ②当点P位于AC右侧,且P3M=6时, 过点P2作P2N⊥P3M于点N, 考点:一次函数的综合题. 26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数). (1)若一次函数y1=kx+b的图象经过A、B两点. ①当a=1、d=﹣1时,求k的值; ②若y1随x的增大而减小,求d的取值范围; (2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由; (3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由. 【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化. 当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m. 试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m的关系式. 试题解析: (1)①当a=1、d=﹣1时,m=2a﹣d=3, 所以二次函数的表达式是y=﹣x2+x+6. ∵a=1, ∴点A的横坐标为1,点B的横坐标为3, 把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0, ∴A(1,6),B(3,0). 将点A和点B的坐标代入直线的解析式得: ,解得: , 所以k的值为﹣3. 把x=a+2代入抛物线的解析式得:y=a2+6a+8. ∴A(a,a2+6a+8)、B(a+2,a2+6a+8). ∵点A、点B的纵坐标相同, ∴AB∥x轴. (3)线段CD的长随m的值的变化而变化. ∵y=﹣x2+(m﹣2)x+2m过点A、点B, ∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m, ∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m). ∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2) 考点:二次函数综合题.猜你喜欢: 1. 2017年中考数学试卷含答案 2. 2017中考数学试卷真题含答案 3. 中考数学规律题及答案解析 4. 中考数学仿真模拟试题附答案 5. 江苏省泰州市中考语文试卷及答案