
一、选择题(共15小题,每小题3分,每小题只有一个正确的选项,请将答案填入答题栏内.)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案 1.下列各数中,是负数的是( )。A.-(-3) B.-|-3| C.(-3)2 D. |-3|2.下列各组数中,互为相反数的一组是( )A.3与 B.2与|-2| C.(-1)2 与1 D. -4与(-2)23. 文具店、书店、玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店在书店东边100米处,小明从书店沿街向东行40米,又向东行 米,此时小明的位置在( )A.玩具店 B.玩具店东-60米 C.文具店 D.文具店西40米4. 下列说法正确的是( )A.若 ,则 , , 互为补角 B.余角都相等C.补角一定比余角大 D.互补的两个角不能都是钝角5.是左图所示的正立方体的展开图的是( )A B C D6.用四舍五入法按要求对分别取近似值,其中错误的是( ) A.(精确到) B.(精确到百分位) C.(保留两个有效数字) D.(精确到)7. 的补角为 ,则它的余角为( )A. B. C. D.以上都不对8.如图,钟表8时30分时,时针与分针所成的角的度数为( )° ° ° °9.足球比赛的计分规则:胜一场得 分,平一场得 分,负一场得 分.一个队打了 场,负了 场共得 分,那么这个队胜的场数为( ) .若| - |+(2 -1) =0,则 的值是( ) A. B. C.- D.- 11.轮船航行到C处观测小岛A的方向是北偏西54°,那么从A同时观测轮船在C处的方向是( ) A.南偏东54° B.东偏北36° C.东偏南54° D.南偏东36°12.若∠A = 20°18′,∠B = 20°15′30〃,∠C = °,则( )A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B13.下面哪个平面图形不能围成正方体( ) A B C D14.已知点 在同一直线上,若 , ,则 的长是( )A. B. C. D. 或 15.解方程 ,去分母正确的是( ) A. B. C. D. 二、填空题:(本大题5小题,每小题4分,共20分)16、海拔 比海拔_______要低 .17. 4.如图是某个几何体的展开图,这个几何体是 . 18.南偏东15°和北偏东25°的两条射线组成的角等于_______.19.方程 变形为 ,这种变形叫___________,根据是____________. 20.如图,是一个简单的数值运算程序当输入x的值为-1时,则输出的数值为 。三、解答题(本大题8小题,共55分)21.计算(每个6分,共12分):(1) (2) 22.解方程(每题6分,共12分):(1) ; (2) 23.(8分)育新中学团支部发起“保护我国珍贵动物大熊猫”活动,全校105名团员积极参与,踊跃捐款,有一部分团员每人捐款8元,其余团员每人捐款5元,张硕和李雷整理捐款后,张硕说捐款总数755元,李雷说不可能,你认为谁说的对?为什么?24.(6分)如图,是由小立方块堆成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来。25.(8分)如图, 为直角, 为锐角,且 平分 , 平分 ,求 的度数.26.(9分)“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话。⑴现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15.⑵通过研究问题⑴,利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.
人教版七年级第一学期期末试卷四数学(满分100分,考试时间100分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.1.如果+20%表示增加20%,那么-6%表示( ). A.增加14% B.增加6% C.减少6% D.减少26%2.如果 ,则“ ”内应填的实数是( )A. B. C. D. 3. 实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是( ) A. B. C. D. 4. 下面说法中错误的是( ). A.368万精确到万位 B.精确到百分位 C.有4个有效数字 D.10000保留3个有效数字为×1045. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( ) A.这是一个棱锥 B.这个几何体有4个面C.这个几何体有5个顶点 D.这个几何体有8条棱6. 如果a<0,-1<b<0,则 , , 按由小到大的顺序排列为( )A. < < B. < < C. < < D. < < 7.在解方程 时,去分母后正确的是( ) A.5x=15-3(x -1) B.x=1-(3 x -1)C.5x=1-3(x -1) D.5 x=3-3(x -1)8.如果 , ,那么x-y+z等于( )A.4x-1 B.4x-2 C.5x-1 D.5x-29. 如图1,把一个长为 、宽为 的长方形( )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A. B. C. D. 图1 图2 从正南方向看 从正西方向看 第9题 第10题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A.12个 B.13个 C.14个 D.18个二、填空题:本大题共10小题,每小题3分,共30分.11.多项式 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.若ab≠0,则等式 成立的条件是______________.14.若 ,则 .15.多项式 不含xy项,则k= ;16.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是 . (用含m,n的式子表示)17.有理数a、b、c在数轴上的位置如图所示,化简 的结果 是________________.18.一个角的余角比它的补角的 还少40°,则这个角为 度.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售, 售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。那么2007,2008,2009,2010这四个数中_____可能是剪出的纸片数三、解答题:本大题共6小题,共50分.解答时应写出文字说明、证明过程或演算步骤.(21~24题,每题8分,共32分)21.计算:(1)(-10)÷ (2) .22.解方程:(1) (2) = 3.23.已知: , (1)求3A+6B的值;(2)若3A+6B的值与x的值无关,求y的值。24.已知关于x的方程 的解比 的解小 ,求a的值.(25~26题,每题9分,共18分)25.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点 E、F之间距离是10cm,求AB,CD的长.26.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折。(1)若规定只能到其中一个超市购买所有物品,什么情况下到A超市购买合算?(2)若学校想购买20张书柜和100只书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算的结果来验证你的说法。 赞同3| 评论
一、选择题(每题3分,共36分)\x0d\x0a1.在下列各数:-(-2),-(-2^2),-2的绝对值的相反数,(-2)^2,中,负数的个数为()\x0d\个个个个\x0d\x0a2.下列命题中,正确的是()\x0d\x0a①相反数等于本身的数只有0;②倒数等于本身的数只有1;\x0d\x0a③平方等于本身的数有±1和0;④绝对值等于本身的数只有0和1;\x0d\x0aA.只有③B.①和②C.只有①D.③和④\x0d\年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至()\x0d\℃℃℃℃\x0d\x0a4.据测我国每天因土地沙漠化造成的经济损失约亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失()\x0d\*10^*10^10\x0d\*10^*10^8\x0d\x0a5.两数相加,其和小于其中一个加数而大于另一个加数,那么()\x0d\x0aA.这两个加数的符号都是正的B.这两个加数的符号都是负的\x0d\x0aC.这两个加数的符号不能相同D.这两个加数的符号不能确定\x0d\x0a7.代数式5abc,-7x^2+1,-2x/5,1/3,(2x-3)/5中,单项式共有()\x0d\个个个个\x0d\x0a8.小刚做了一道数学题:“已知两个多项式为A,B,求A+B的值,”他误将“A+B”看成了“A-B”,结果求出的答案是x-y,若已知B=3x-2y,那么原来A+B的值应该是()。\x0d\\x0d\x0a9.下列方程中,解是-1/2的是()\x0d\\x0d\x0a11.甲乙两要相距m千米,原计划火车每小时行x千米,若每小时行50千米,则火车从甲地到乙地所需时间比原来减少()小时。\x0d\\x0d\x0a12.我们平常的数都是十进制数,如2639=2*10^3+6*10^2+3*10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只有两个数码0和1.如二进制数101=1*2^+0*2^1+1=5,故二进制的101等于十进制的数5,那么二进制的110111等于十进制的数()\x0d\\x0d\x0a二、填空题(每小题2分,共16分)\x0d\x0a13.大于-2而小于1的整数有________。\x0d\x0a14.若一个数的平方是9,则这个数的立方是________。\x0d\x0a15.计算:10+(-2)*(-5)^2=_________。\x0d\x0a16.近似数万是精确到了_________位,有________个效数字。\x0d\x0a17.若代数式2x-6与互为倒数,则x=______。\x0d\x0a18.若2*a^3n与-3*a^9之和仍为一个单项式,则a=_______。\x0d\x0a四、列方程解应用题(共13分)\x0d\x0a29.(本题4分)甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.\x0d\x0a30.(本题4分)青藏铁路的通车是几代中国人的愿望.在这条铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是每小时100千米,在非冻土地段的行驶速度可以达到每小时120千米,在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段约多用小时.如果通过非冻土地段需要t小时,\x0d\x0a(1)用含有t的代数式表示非冻土地段比冻土地段长多少千米?\x0d\x0a(2)若格尔木到拉萨路段的铁路全长是1118千米,求t(精确到)及冻土地段的长(精确到个位).\x0d\x0a31.(本题5分)某年级利用暑假组织学生外出旅游,有10名家长代表随团出行,甲旅行社说:“如果10名家长代表都买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括10名家长代表在内,全部按票价的6折(即按全标的60%收费)优惠”,若全票价为40元,\x0d\x0a(1)如果学生人数为30人,旅行社收费多少元?如果学生人数为70人,旅行社收费多少元?\x0d\x0a(2)当学生人数为多少时,两家旅行社的收费一样?\x0d\x0a(3)选择哪个旅行社更省钱?\x0d\x0a五、探究题(共3分)\x0d\x0a32.设a,b,c为有理数,在有理数的乘法运算中,满足;\x0d\x0a(1)交换律a*b=b*a;(2)对加法的分配律(a+b)*c=a*c+b*c。\x0d\x0a现对a&b这种运算作如下定义:a&b=a*b+a+b\x0d\x0a试讨论:该运算是否满足(1)交换律?(2)对加法的分配律?通过计算说明。\x0d\x0a六、附加题(共6分,记入总分,但总分不超过100分。)\x0d\x0a33.(本题3分)证明:1/3<=1/(1*3)+1/(3*5)+------+1/[(2n-1)*(2n+1)]<1/2,(n为正整数)。\x0d\x0a34.(本题3分)\x0d\x0a关于x的方程||x-2|-1|=a有三个整数解,求a的值。
二、你能填得又快又准吗?(每小题3分,共30分)
11. ﹣2的倒数是.
考点: 倒数.
分析: 根据倒数定义可知,﹣2的倒数是﹣.
解答: 解:﹣2的倒数是﹣.
点评: 主要考查倒数的定义,要求熟练掌握.需要注意的是
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
12. 如果收入50元记作+50,那么﹣80表示支出80元.
考点: 正数和负数.
分析: 根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.
解答: 解:收入50元记作+50,那么﹣80表示支出80元,
故答案为:支出80元.
点评: 本题考查了正数和负数,相反意义的量用正数和负数表示.
13. 大于﹣3且小于等于2的所有整数是﹣2、﹣1、0、1、2.
考点: 数轴.
分析: 将大于﹣3且小于等于2的整数在数轴上表示出来,然后根据数轴填空.
解答: 解:如图所示:大于﹣3且小于等于的整数是﹣2、﹣1、0、1、2,共有5个;
故答案是:﹣2、﹣1、0、1、2.
点评: 本题考查了数轴.本题采用了“数形结合”的数学思想.
14. 某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是
2a+10元.
考点: 列代数式.
专题: 应用题.
分析: 由已知,本月的收入比上月的2倍即2a,还多10元即再加上10元,就是本月的收入.
解答: 解:根据题意得:
本月的收入为:2a+10(元).
故答案为:2a+10.
点评: 此题考查了学生根据意义列代数式的掌握,关键是分析理解题意.
15. °等于
5220秒.
考点: 度分秒的换算.
专题: 计算题.
分析: 根据度变为分乘以60,变为秒乘以3600即可得出答案.
解答: 解:根据度变为分乘以60,变为秒乘以3600,
∴×60=87分,
∴×3600=5220秒.
故答案为:5220.
点评: 本题主要考查了度变为分乘以60,变为秒乘以3600,比较简单.
16. 如图,∠AOC和∠DOB都是直角,如果∠DOC=28°,那么∠AOB=152°.
考点: 角的计算.
专题: 计算题.
分析: 从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.
解答: 解:∵∠AOC=∠DOB=90°,∠DOC=28°,
∴∠AOB=∠AOC+∠DOB﹣∠DOC,
=90°+90°﹣28°,
=152°.
故答案为:152°
点评: 此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.
17. 建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是两点确定一条直线.
考点: 直线的性质:两点确定一条直线.
专题: 推理填空题.
分析: 根据公理“两点确定一条直线”,来解答即可.
解答: 解:∵两点确定一条直线,
∴建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.
故答案为:两点确定一条直线.
点评: 本题考查的是公理“两点确定一条直线”在实际生活中的运用,解答此题不仅要根据公理,更要联系生活实际,以培养同学们的学以致用的思维习惯.
18. 若3amb2与是同类项,则=0.
考点: 同类项.
专题: 计算题.
分析: 根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m的值,再代入代数式计算即可.
解答: 解:∵3amb2与是同类项,
∴n=2,m=1,
∴m﹣n=0
故答案为:0.
点评: 本题考查了同类项的定义,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.
19. 初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大 (填“大”或“小”).
考点: 可能性的大小.
分析: 分别求得找到男生和找到女生的概率即可比较出可能性的大小.
解答: 解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,
∴找到男生的概率为:=,
找到女生的概率为:=
∴找到男生的可能性大,
故答案为:大
点评: 本题考查了可能性的大小,要求可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.
20. 观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.
考点: 规律型:数字的变化类.
专题: 规律型.
分析: 根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.
解答: 解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.
点评: 主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
三、请你来算一算、做一做,千万别出错哟!
21. 计算:(1)4×(﹣2)﹣(﹣8)÷2
(2)
考点: 有理数的混合运算.
专题: 计算题.
分析: (1)依据同号相乘得正,异号相乘得负计算;
(2)运用乘法分配律计算比较简便.
解答: 解:(1)4×(﹣2)﹣(﹣8)÷2,
=﹣8+4,
=﹣4;
(2)原式=(﹣3)2×()+(﹣3)2×(﹣),
=3﹣4=﹣1.
点评: 此题考查学生熟练掌握运算法则进行计算的能力.关键是(1)依据同号相乘得正,异号相乘得负计算.(2)运用乘法分配律计算比较简便.
22. 解方程:(1)6y+2=3y﹣4(2)
考点: 解一元一次方程.
专题: 计算题.
分析: (1)此题为整式方程,只需移项,化系数为1,即可得到方程的解.
(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而解出方程.
解答: 解:(1)移项,得:6y﹣3y=﹣4﹣2;
合并同类项,得:3y=﹣6;
方程两边同除于3,得:y=﹣2;
(2)去分母,得:2(x+1)﹣6=5x﹣1;
去括号,得:2x+2﹣6=5x﹣1;
移项、合并同类项,得:﹣3x=3;
方程两边同除以﹣3,得:x=﹣1.
点评: 本题考查了一元一次方程的解法,比较简单,同学们要熟练掌握.
23. 先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.
考点: 整式的加减—化简求值.
分析: 本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.
解答: 解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a
2﹣3a﹣1+4a﹣4a2=a﹣1,
当a=﹣2时,
a﹣1=﹣2﹣1=﹣3.
点评: 考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.
24. 如图,是由5个正方体组成的图案,请在方格纸中分别画出它的主视图、左视图、俯视图.
考点:作图-三视图.
专题: 作图题.
分析: 主视图从左往右2列正方形的个数依次为3,2;
左视图1列正方形的个数为3;
俯视图从左往右2列正方形的个数依次为1,1;依此画出图形即可.
解答: 解:.
点评: 本题考查三视图的画法;主视图,左视图,俯视图分别是从物体正面,左面,上面看得到的平面图形.
25. 某百货商场元旦期间搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元,优惠10%,超过500元的,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和468元,问:
(1)此人两次购物其物品不打折值多少钱?
(2)在这次活动中他节省了多少钱?
(3)若此人将这两次的钱合起来购同一商品是更节省还是亏损?说明理由.
考点: 一元一次方程的应用.
分析: (1)134元不打折,设用468元的商品原价为x元,根据题意列出方程,求出方程的解确定出原价,即可确定出此人两次购物其物品如果不打折值的钱数;
(2)根据不打折的钱数减去打折后的钱数即可得到结果;
(3)更节省,求出两次购物的钱合起来购相同的商品打折后的钱数,与分开卖的钱数比较即可得到结果.
解答: 解:(1)第一次购物用了134元时,不超过200元不给优惠,
因此,第一次购物其物品不打折值134元.
设第二次用了468元购物的原价为x元,则:
(1﹣10%)x=468
解得x=520
134+520=654(元)
所以,此人两次购物其物品不打折值654元;
(2)因为134+468=602(元) 654﹣602=52(元)
另解:520﹣468=52(元)
所以,在这次活动中他节省了52元;
(3)是节省,且节省了元
因为两次的钱合起来是602元,且超过500元
所以两次的钱合起来共优惠602﹣(500××)=(元)
所以此人将这两次的钱合起来购同一商品是更节省
点评: 此题主要考查了一元一次方程的应用,实际生活中的折扣问题,关键是运用分类讨论的思想:分析清楚付款打折的两种情况.
26. 中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
意见 非常不满意 不满意 有一点满意 满意
人数 200 160 32 8
百分比
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
考点: 扇形统计图.
分析: (1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
解答: 解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=°,2%×360°=°,
∴
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
点评: 此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
27. 在如图所示的2011年1月份日历中,
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?
(2)这个长方形的方框圈出的9个数的和能为216吗?
(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a
考点: 一元一次方程的应用.
分析: (1)设中间的数为x,那么左下角的数是x+6,右上角的数为x﹣6,根据“对角线”上的3个数字的和为39,那么可得到相对的两个数的和是中间的数的2倍.那么这9个数是中间的数的9倍;
(2)设中间的数为y,列出代数式比较得出结果;
(3)观察可得平行四边形对角线上的两个数的和相等.
解答: 解:(1)设对角线中间一个数为x,那么左下角的数为x+6,右上角的数为x﹣6,则
x+x+6+x﹣6=39,
解得x=13.
这9个数的和=5+6+7+12+13+14+19+20+21=162.
(2)不能.
设中间的数为y,则
9y=216,
解得y=24,
那么矩形右下角的数为24+8=32,这是不可能的,
所以不能因为这9个数的和只可能是162
(3)a=b﹣1=c﹣6=d﹣7,或b=a+1=c﹣5=d﹣6,
或c=a+6=b+7=d﹣1,或d=a+7=b+6=c+1.
点评: 考查了一元一次方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系.注意运用类比的方法求解相同的例子.
希望这篇2016-2017年七年级上册数学期末试卷(含答案),可以帮助更好的迎接即将到来的考试!