为什么这两个不同的专业会融合在一起?原因在于大数据在新时代的广泛应用(这里就需要跟大家小科普一下大数据的起源于爆火):“大数据”作为一种概念和思潮由计算领域发端,之后逐渐延伸到科学和商业领域。大多数学者认为,“大数据”这一概念最早公开出现于1998年,美国高性能计算公司SGI的首席科学家约翰·马西(John Mashey)在一个国际会议报告中指出:随着数据量的快速增长,必将出现数据难理解、难获取、难处理和难组织等四个难题,并用“Big Data(大数据)”来描述这一挑战,在计算领域引发思考。2007年,数据库领域的先驱人物吉姆·格雷(Jim Gray)指出大数据将成为人类触摸、理解和逼近现实复杂系统的有效途径,并认为在实验观测、理论推导和计算仿真等三种科学研究范式后,将迎来第四范式——“数据探索”,后来同行学者将其总结为“数据密集型科学发现”,开启了从科研视角审视大数据的热潮。2012年,牛津大学教授维克托·迈尔-舍恩伯格(Viktor Mayer-Schnberger)在其畅销著作《大数据时代(Big Data: A Revolution That Will Transform How We Live,Work,and Think)》中指出,数据分析将从“随机采样”、“精确求解”和“强调因果”的传统模式演变为大数据时代的“全体数据”、“近似求解”和“只看关联不问因果”的新模式,从而引发商业应用领域对大数据方法的广泛思考与探讨。大数据于2012、2013年达到其宣传高潮,2014年后概念体系逐渐成形,对其认知亦趋于理性。大数据相关技术、产品、应用和标准不断发展,逐渐形成了包括数据资源与API、开源平台与工具、数据基础设施、数据分析、数据应用等板块构成的大数据生态系统,并持续发展和不断完善,其发展热点呈现了从技术向应用、再向治理的逐渐迁移。经过多年来的发展和沉淀,人们对大数据已经形成基本共识:大数据现象源于互联网及其延伸所带来的无处不在的信息技术应用以及信息技术的不断低成本化。大数据泛指无法在可容忍的时间内用传统信息技术和软硬件工具对其进行获取、管理和处理的巨量数据集合,具有海量性、多样性、时效性及可变性等特征,需要可伸缩的计算体系结构以支持其存储、处理和分析。