高数一的内容多,知识掌握要求一般要比高数二要高,大部分包含了高数二的内容。1、内容不同 高数一主要学微积分、函数、极限,各个内容之间相互联系,层层递进需要扎实的基本功。高数二主要学概率论、线性代数等学习内容相对简单。 2、学习方法不同 由于高数一各章是相互关联、层层推进的,每一章都是后一章的基础,所以学习时一定要按部就班,只有将一章真正搞懂了才可进入下一章学习,学习过程中不能贪图快速学完。高数二不需要太多的基础知识,只是概率里有一点积分和导数的简单计算,高数二内容连贯性不是很强。 扩展资料:高数一内容如下: 第一章:函数定义,定义域的求法,函数性质。 第一章:反函数、基本初等函数、初等函数。 第一章:极限(数列极限、函数极限)及其性质、运算。 第一章:极限存在的准则,两个重要极限。 第一章:无穷小量与无穷大量,阶的比较。 第一章:函数的连续性,函数的间断点及其分类。 第一章:闭区间上连续函数的性质。 第二章:导数的概念、几何意义,可导与连续的关系。 第二章:导数的运算,高阶导数(二阶导数的计算) 第二章:微分 第二章:微分中值定理。 第二章:洛比达法则 第二章:曲线的切线与法线方程,函数的增减性与单调区间、极值。 第二章:最值及其应用。 第二章:函数曲线的凹凸性,拐点与作用。 第三章:不定积分的概念、性质、基本公式,直接积分法。 第三章:换元积分法 第三章:分部积分法,简单有理函数的积分。 第三章:定积分的概念、性质、估值定理应用。 第三章:牛一莱公式 第三章:定积分的换元积分法与分部积分法。 第三章:无穷限广义积分。 第三章:应用(几何应用、物理应用) 第四章:向量代数 第四章:平面与直线的方程 第四章:平面与平面,直线与直线,直线与平面的位置关系,简单二次曲面。 第五章:多元函数概念、二元函数的定义域、极限、连续、偏导数求法。 第五章:全微分、二阶偏导数求法 第五章:多元复合函数微分法。 第五章:隐函数微分法。 第五章:二元函数的无条件极值。 第五章:二重积分的概念、性质。 第五章:直角坐标下的计算。 第五章:在极坐标下计算二重积分、应用。 第六章:无穷级数、性质。 第六章:正项级数的收敛法。 第六章:任意项级数。 第六章:幂级数、初等函数展开成幂级数。 第七章:一阶微分方程。 第七章:可降阶的微分方程。 第七章:线性常系数微分方程。高数二的内容如下: 数列的极限 函数极限 无穷小量与无穷大量 两个重要极限、收敛原则 函数连续的概念、函数的间断点及其分类 函数在一点处连续的性质 闭区间上连续函数的性质 导数的概念 求导公式、四则运算、复合函数求导法则 求导法(续)高阶导数 函数的微分 微分中值定理 洛必塔法则 曲线的切线与法线方程、函数的增减性与单调区间 函数的极值与最值 曲线的凹凸性与拐点 不定积分的概念、性质、直接积分法 换元积分法 不定积分的分部积分法 简单有理函数的积分 定积分的概念、性质、几何意义 牛顿--不莱尼茨公式与定积分计算 定积分的换元法 定积分的分部积分法 无穷区间上的广义积分 定积分的应用 多元函数的概念、定义域的求法 偏导数的求法 全微分及其求法 多元函数偏导数求法 隐含数的导数和偏导数 二重积分的定义、性质及计算(高数二) 直角坐标系下计算二重积分 交换积分次序、选择积分次序